Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Ecol Resour ; 24(4): e13939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372463

RESUMO

Utilization of faeces has long been a popular approach for genetic and ecological studies of wildlife. However, the success of molecular marker genotyping and genome resequencing is often unpredictable due to insufficient enrichment of endogenous DNA in the total faecal DNA that is dominated by bacterial DNA. Here, we report a simple and cheap method named PEERS to predominantly lyse animal cells over bacteria by using sodium dodecyl sulphate so as to discharge endogenous DNA into liquid phase before bacterial DNA. By brief centrifugation, total DNA with enriched endogenous fraction can be extracted from the supernatant using routine methods. Our assessments showed that the endogenous DNA extracted by PEERS was significantly enriched for various types of faeces from different species, preservation time and conditions. It significantly improves the genotyping correctness and efficiency of genome resequencing with the total additional cost of $ 0.1 and a short incubation step to treat a faecal sample. We also provide methods to assess the enrichment efficiency of mitochondrial and nuclear DNA and models to predict the usability of faecal DNA for genotyping of short tandem repeat, single-nucleotide polymorphism and whole-genome resequencing.


Assuntos
DNA , Mamíferos , Animais , DNA Bacteriano/genética , DNA/genética , Fezes , Mamíferos/genética , Animais Selvagens/genética
3.
Sci Rep ; 9(1): 18863, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827140

RESUMO

Trade in ivory from extant elephant species namely Asian elephant (Elephas maximus), African savanna elephant (Loxodonta africana) and African forest elephant (Loxodonta cyclotis) is regulated internationally, while the trade in ivory from extinct species of Elephantidae, including woolly mammoth, is unregulated. This distinction creates opportunity for laundering and trading elephant ivory as mammoth ivory. The existing morphological and molecular genetics methods do not reliably distinguish the source of ivory items that lack clear identification characteristics or for which the quality of extracted DNA cannot support amplification of large gene fragments. We present a PCR-sequencing method based on 116 bp target sequence of the cytochrome b gene to specifically amplify elephantid DNA while simultaneously excluding non-elephantid species and ivory substitutes, and while avoiding contamination by human DNA. The partial Cytochrome b gene sequence enabled accurate association of ivory samples with their species of origin for all three extant elephants and from mammoth. The detection limit of the PCR system was as low as 10 copy numbers of target DNA. The amplification and sequencing success reached 96.7% for woolly mammoth ivory and 100% for African savanna elephant and African forest elephant ivory. This is the first validated method for distinguishing elephant from mammoth ivory and it provides forensic support for investigation of ivory laundering cases.


Assuntos
Conservação dos Recursos Naturais , Citocromos b/genética , Código de Barras de DNA Taxonômico/métodos , Elefantes/classificação , Mamutes/classificação , Animais , Crime , Elefantes/genética , Mamutes/genética , Sensibilidade e Especificidade
4.
Ecol Evol ; 9(12): 6821-6832, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380018

RESUMO

The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein-coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton-translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein-protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.

5.
Genes (Basel) ; 10(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284503

RESUMO

The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.


Assuntos
Cabras/genética , Cavalos/genética , Mamutes/genética , Ruminantes/genética , Algoritmos , Animais , DNA Mitocondrial , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...